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1 Summary

This project has investigated the application of wavelet methods in spread spectrum communi-

cations. Use of the wavelet transform as ant alternative to the short-time Fourier transform and

quadratic time-frequency transforms (e.g., the Wigner-Ville distribution) for measuring critical pa-

rameters of intercepted slow frequency hopping communication signals has been explored. The

wavelet transform was found to not offer significant advantages over Fourier methods in this ap-

plication because the sinusoidal analysis provided by the Uourier transform is well matched to the

piecewise-sinusoidal carriers used in frequency hopping signals. However, use of the wavelet trans-

form with sinusoidal wavelets offered an efficient irultiresoltition framework for precise measurement

of hopping times and frequencies. A hybrid wavelet-Fourier algorithm was developed to exploit this

feature.

A new approach to multiple-access spread spectrum communications was also developed under

this project. Thtz approach emp'loy. crh•g-oral waver!- as symbols for encoding digital information

signals. Several users can transmit sinultaneouslv in the same medium using channels defined by

wavelet scale in much the same way that channels are defined by frequency in traditional frequency

division multiple access. With appropriate choices of wavelet symbols, this approach has been shown

to provide spectral spreading that makes the transmitted signals robust with respect to dctection,

intercep1tion, and jamming by typical methods.

2 Research Objectives

The main objectives for the research under this effort are summarized as follows:

1. Investigate the utility of the wavelet transform in estimating the spreading function for inter-

cepted slow frequency hopping spread spectrum communication signals. Identify advantages

and drawbacks of the wavelet transform compared to the short-time Fourier transform in this

application.

2. Develop wavelet-based approaches to multi-user spread spectrum communications. Consider

the design of wavelets that provide robustness of the transmitted signal to detection, intercep-

tion, and jamming.

The results obtained in pursuit of these objectives are described in the following two sections of

this report. For convenience in exposition, objective 2 is discussed first.



3 Research Results: Wavelet-Based Spread Spectrum

The purpose of this portion of the research effort, was to initroduce a new method of coding digital

communication signals on orthogonal symbols in such a way that several users can communicate

simultaneously using the same transmission medium. Such methods are known in the communica-

tions literature as code division multiple access (CDIMA) schemes1 . The two most popular CDMA

schemes are frequency division multiple access (FJ)MA) and time division multiple access (TDMA).

In FDMA, orthogonality of the variouis users' messages is achieved by separating them into essen-

tially disjoint frequency bands while orthogonality of T'DMA messages is obtained by constraining

them to occupy disjoint, time intervals.

Though FDMA and TDMA offer advantages in simplicity, they are obviously not the only ways

to achieve orthogonality of transmitted message information. Other CDMA schemes were introduced

originally in the context of military communications, where they were used to provide robustness

with respect to detection, interception by unintended receivers, and interference -- including deliber-

ate interference (jamming) [20]. More recently the value of certain CDMA approaches in commercial

applications, including cellular telephony, has been pointed out and civilian CDMA has become a

topic of interest within the communications research community.

This research has developed a CDMA scheme called scale-division multiple access (SI)MA) that is

based on the theory of wavelets. SDMA offers much of the simplicity of FDMA while retaining many

of the desirable features of more complicated CDMA schemes, including robustness to detection,

interception, and jamming. In I"DMA, bits are encoded on orthogonal symbols obtained by time

shifting and frequency shifting a single "mother" symbol - a truncated sine wave. SDMA encodes

bits on orthogonal symbols obtained by time shifting and dilating a single mother wavelet, symbol,

which may be chosen friom a fairly broad class of wavelets. It is the separation of the various users'

messages into orthogonal channels at different dilations or "scales" that suggests the name "scale

division multiple access".

Closely associated with the theory of wavelets is the concept of a frame, which generalizes the

notion of an orthonormal basis. The principle of SDMA coding has been shown to extend from

orthonormal wavelet bases to wavelet frames.

'CUMA is interpreted in a broad sense hierc, i.e. as coding on orlthogonal or nearly orthogonal symbols.
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3.1 Mathematical preliminaries

Thik short section reviews some mathematical concepjts and introduces some notation and conven-

tions that will be used in explaining SDMA and in the subsequent discussion on demodulation of

intercepted frequency hopping siglials.

3.1.1 Lebesgue spaces

Unless otherwise noted, the expression

sf(t) 
dt

will denote the Lebesgue integral of the Lebesgue measurable function f : R -- C over the Lcbesguc

measurable set S C R.. For 1 < p < o, the p norm of the Lubesgue measurable function f F --

is defined as
11 IP 1P if (t)] dt .

If the integrals of two Lebesgue measurable functions f and g on every measurable set are equal.

then f and q are said to be Lebesgue equivalent. This condition is identical to the requirement that

the Lebesgue measure of the set {t I f(t) # g(t)} is zero.

For p ? 1, the l,•'sgue space L1 t LP(-.) consists of equivalence classes of Lebesgue equivalent

functions f for which IJfIIp < oo. With addition and scalar multiplication defined in the obvious

ways. LP is a complex Banach space for all p. Furthermore, 1,2 is a complex Ililbert space with

inni product

(f, 9) - J f(t)g(t) dt

One often writes "f E D"' to mean that the equivalence class of f is in LP.

The discrete Lebesgue space Fe A P(Z) consists of complex sequences c = {ck I k e Z) for which

1R,= (F, lrkJp) "'y < 0
kiEZ

As with LP, tP is a complex Banach space for all p and P is a complex Hilbert space with inner

product
(c,d) ckd;

kCZ

Lebesgue spaces and norms over T' and Z'" are defined analogously.

Since this report is primarily concerned with analysis in 1,2, f.f11 will be used to denote 11/112
when there is no danger of confusion.
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3.1.2 Fourier transform

The Fourier transform of f E (L 1 n L 2 ) is the function T{f) 1 - C - with values

h(, •- I f (t)c-'- dt

Lebesgue equivalent functions clearly have the same Fourier transform. Hence the operator :T is well

defined on Ll n L 2. It is clearly iinear.

Since Ll n L' is dense in L2 , the definition of T extends naturally to a mapping of L2 onto L'.

The particulars of this extension are given by Plancherel's theorem [23]. One consequence of this

extension is that, for functions f and g in L2,

(j,ý) :2,•<f.g)

which obviously implies Jffl 2 = 2irlJfJ1 2.

If f E L', the inverse Fourier transform of I is the function g : R -. C defined by

g(t) I Jf (w)e`1' d. (2)

The function g is Lebesgue equivalent to f. Together with the preceding notes, this implies that

the Fourier transform defined by (I) extends to an isomorphism of L2 onto L2 which is isometric

except for the constant factor V'7.

3.1.3 Bandlimited and timelimited

In electrical engineering, it is common to regard L2 functions as "signals" which are functions of

time. Then Fourier transform variable w is thus known as (angular) frequency.

A function f E L2 is bandlimitd if there is an fQ E R so that f(A ) = 0 for w 9 (-Q, Q). On the

other hand, a. function f - L2 is timelimiled if there is a T E R and a function g that is Lebesgue

equivalent to f such that g(t) = 0 for t i (-7, 1).

3.1.4 Orthonormal bases of LV

If J is an index set, a set R = {'j I j E J) of elements in L' is orthonormal if

0 j 4k

for all j and k in J.

4
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Figure 3: An example of encoding information on the Haar wavelet at different scales.

robustness with respect to detection, interference, and narrowband jamming. Design of wavelets for

S)I.A applications is discussed in later sectious.

3.3.2 Channel capacity and synchronization

11 is evident from Figure 3 that transinitters i;sing finpr scales (lower m) will be able to transmit

more bits per unit time than those using coarser scales. This may be a feature in some applications;

where it is not, time-division within the high-capacily channels could be used to equalize capacities.

Expressions (1) and (5) assume that the transmitters are perfectly synchronized and the prop-

agation delays from each transmitter to t he receiver are identical. Orthogonality of the channels

is compromised if the received signals are not perfectly synchronized, as is evident in the example

of Figure 3. This problem is not resiricted to SDMA. Rather, it is inherent in any system using

time-limited symbols [.5]. Design of bandlimited wavelets for SDMA that achieve small channel

crosstalk under asynchronous operation is discussed later in this report.

If)



3.3.3 Coding on frames

The idea of coding on orthogonal sets can be extended lo coding on frames, the extension is most well

suited for transmission of large data blocks. Let 4) = {¢j Ije .1) be a frame and let 4$ = J{., I JJ}

be its dual. If b = {b, .i E J} is a collection of scalars corresponding to one information sequence

as in part A of this section, the transmitter forms an analog signal s via the adjoint frame operator

T• operating on b

s Tb = j'0
.7•

Without noise, the receiver obtains a corresponding sequence•3 = Jý3 j j E J) by applying the frame

operator T to the received signal s.

7 =s or 3j=(s,¢,)

The map 7'Y : b - 3 is not generally injective, so that, an equivalence class B, of scalar sequences

is mapped to the same 3. 3 is called the typical element of B,.

If different information sequence corresponds to different equivalent class, then the information

sequence is one to one corresponding to the typical element. In another word, the receiver can

recover the information.

In the presence of additive noise z, the signal at receiver bpcomes s + z and the demodulation

operation yields

"T(s•) = F(s + z) =,,+ Tz

which generally does not correspond to the equivalence class of s. To combat this, a superclass can

be constructed which is tie union of the equivalen(e classes whose typical elements are near in the

sense of the norm (note T is continuous). This partitioning represents the decision mechanism.

3.4 Spectrum analysis of SDMA

The purpose of this section is to describe explicitly how the smoothed power spectral density of

an SDMA signal depends on the mother wavelet and the statistical behavior of the information

sequence. A procedure for pre-shaping the autocorrelation function of the information sequence is

also described.



channel -1 ... b - b1  bL ...

channel 0 .. b-2  b-7 bo but b 2 .

channel-I ... b- 2  b-' b0 b' bf ...

Figure ,1: Information Streams

3.4.1 Power spectrum

Beginning with the form

v(t) = He[s(t)C ']

which relates the bandpass signal v to the wide-•ense stationary lowpass signal s. the autocorrelation

'unction of v may be expressed as

Wnere o,, is the autocorrelation function of the equivalent lowpass signal s. The Fourier transform

of ;5,. yields the desired expression for the power spectral density 4 y,, in the form

1 - WC ) + 4~-.~2

wheie 4,,, 's the power density spectrum of .s. Thus it suffices to determine the autocorrelation

fui:(tion and the power spectral density of the equivalent lowpass signal s.

First consider the digital modulation methods for which s is represented in the general form

=~) 1 Zb"W,' (t)

where ,, represents the nth real- or complex-valued information symbol in 1'.e mth channel (see

Figure 4) and TV is a mother wavelet. The set {11' I 'I- w(-- - n); n,m C Z} constitutes an

orthonorinal wavelet set.

The autocorrelation function of s is

¢(t + r; I) = E[s'(t)e( + r)j

I- E E[bb b$]2 -M2W( - n)2 -. / .2',47(L+ - n') (6)

12



. cssne Ohat tho sequzwce of inform:dtlort svmibus b',, widersese stationai v with autocorreai o1.

function

o,,(m:r,) = P E[b"I .b•,÷.L3 '7)
2

Then (6) can be expressed as

0(t + 7: t) = Z 'ro' - m: n' - O)2-m m)/2 -+ - )/2 jtf, -+ r

Imposing the requircment ,(m1 n.) = 0 for m # 0 (iO., that the information streams from different

users are uncorrelated) simplifies the analysis. Then (8) becomes:

•4(t + ,; t)

2 - (' I + r - 2"n' - 2'n

` 00: i - - 2"' n t +- 7 - 2"'n' - 2)rn
2-" (: - )IV( 2" )9)

The summatioi in Q(), namely,

Z (t - 2"-'n )W-( t 'r n' --L qn

is periodic in the t variable with period 2"' iM lbe channel Ti. But o(t + r; 1) is generally not periodic

'if it is, the process is called rycloslotonary). Su(h a process baving multiple periodicities is called

a p.scudo-eycloslaliriary process.

In order to compute the power spectral density of a ps•eido-cyclostationary proctss, the depen-

dence of <,(t + r; t) on the t variable misl be eliminated. This cart be accomplished simply bv

averaging 0,(t + r; t) over a period within thw difleren, channels. Thus

; ) 2 - 2'"n t + r - 2m u•' - 2'n

2-/2 2- 2m

f21 t - 2' 1 t + r 2"n' - 21n
= -j0; m Zj V( - - )W( 22" ) dt

Vn ,?f n 22

i nh 2 mL / I + r-2-'2n'

n 2"2-" 2m" 2m" )d

= t 0i(0;n')2-'2-"' W-( j)W( +r-2 ' )dt (10)

13



The l'oulrier transform of the • e,!alio, in (10) +yields the power spectral dc-isitv of • i;ý the form

- •6 "i(0; 1

where j/ is the Fourier transform of W. Defining

"- , ii(0 71") e

the result in (11) can be expressed as

Z, , ,(2,) 1(2 ,)1 (12)

ofining S"(,w) = :,(, '(•)i 2 allows Equation (12) to be further simplified to

S= s(2"1-,) (13)

Tihis result illusl rates the dependence of the power spectral density ofs on the spectral characteristizs

o0 thxe mother wavelct Ii' and the information sequence {b, }. That is. the spectral characteristics

of ., cart be controlled by design of the molhei wavelet It and by design of the autocorrelation

characteristics of the information sequence.

3.4.2 Autocorrelation

Since the spectrum of SDNMA signal depends on the autocorrelation of information sequence, it ivs

inWletsting to consider shaping of the autocorrelation.

C('im 3.1 Suppose a randori stqucn-e

. ., 2  b-I bo b, b2  ...

is vidr.sense stationary with

0(0) when in = n

10 otheruzse



"- t,,! (t -f,-. kA-0 , k , k 2. dkfin. a dcu , 0 e :qucncc

by

q. = kob, + kjbj+j + k2b,+ 2 + ... + kn,-bi.mt-

Then 'bi) cait be recovered from {qi} by knowing consecutive initial N- 1 bi 's and the aulocorrclation

{fq} of the sequence {q,) is given by

[01 0 ko ki k 2  ... kN- 2 kN-. ko

Oq[1] k, k2  k 3  ... kNv-1 0 kI

09[2] =0(o) k2  k3  k4 ... o 0 k2  (14)

"... ... ... ... ... ... •

L [- J] kN. 0 0 ... kN-1 j

Oqfk] = 0 for k > N

The proof is omitted here.

This laim gives a method to design sequences with desired autocorrelations from .)} by select-

ing difre,,nt ko,. . .,kN-1. The inatrix equation (14) can also be written as

-1
kO ko k- k, k2 .. klA'-2 kN-1 Oq 10]

k, kI k2 k 3  ... kN-. 0 Oq[1]

k-2 0 1 k2 k3  k4  ... 0 0 121 (15)

.. ... .. . . .. ,,

kN-1,_ kNl 0 0 ... N... 1]

So, conversely, if Oq[0], 09[1N,.. - 1] are given, ko, ki, k2 ,..., kN-1 can be ol, ained itera-

tively as follows.

1. Initial values of ko to kN,_ re chosen.

15



2. These are used in the right side of (1s), .ieidihg

ko ko ki k2  ... k.v - 2  k i1 q1'q[0 1
kk k i k2  k3  ... kA ' -_ 0 0,[1]

klk 2  k3  k4.. 0 ()q 2

4'11_- kN_, ... 0 0 -... Oq[N - 1]

3. The squared distance between {k,} and {k,} is calculated.

N-I
S= -

n-O

4. If c is less than a pre-established tolerance, ko,k, .. ,... k 1_j is the answer. Otherwise, let

ko = k',= k',,. and return to step (2). This algorithm is ;,oi guaranteed

to converge.

Note that there are many equations that can be employed instead of (15).

3.4.3 Design of the power spectrr'm

In this section, the performance of the SJ)MA scheme against jamming or exploitation attempts

is discussed. Since the spectrum of the SI)MA signal is dependent on the wavelet selected, one

question arises nal uraily: "Does there exist a wavelet that causes the spectrum of the SDlM A signal

to look like that of white noise?-. This is equivalent to the requirement that 4:o(w) = Y,.. S( 2m w)

is constant within a fairly wide frequency band. This requirement is vague since the scalars which

m selects are unknown and the definition of -fairly wide" is vague. It is useful to discuss a related

equatioii that gives some insights,

E 5(2"'%) = constant (16)
Inez

Note that m takes on all integer values in this equation. l)efining .q() = S(2z), (16) can be further

written as

=S(2w) g(log~w + m)
mE.• m(Z

S16



Let.

G(x)~ g(x + m)
mE7.

Hence equation (16) implies G is constpnt for all real x, Because of the periodicity of G, it caii be

expanded in a Fourier series,

G (X)= C,,C c .....
nEZ

The coefficients are given by
= f1/2 1,/2

Cn 3-1/2 G( z)C-21"n dx = 2 E g(x + m)e- 2ffgnx dx
J -1/2 12m-

- j -2 "'tg(x) dx = §(27rn)

where ý is the Fourier transform of 9. lHence,

G(x) (7ncrn
vEE

The condition ý(2irm) = 0 or fl S(2T)e-`*27m dw = 0 for m $ 0 is necessary and sufficient for G to

be constant, hence is necessary for 1-mz S(2.".o) to be equal to a constant.

3.5 Bandlimited orthogonal wavelet bases

The problem of channel crosstalk (intersymbol interference) that arises in the presence of asyn-

chronous transmitter operation and propagation delay was mentioned above. One way to combat

this problem is to place different transmitters' signals in disjoint frequency bands. This section

derives -milli-hand" wavelet bases whose elements at different scales occupy disjoint bands in the

frequency domain.

One such basis is generated by the (frequency domain) mother wavelet

'(w~)= JI x *j< 2 (17)

0 otherwise

With a0 = 2 and be = 1, this wavelet is easily shown to generate an orthonormal basis of L2 [5]. This

basis gives insight about how to construct other bandlimited wavelet bases in which the dilations of

the mother wavelet W do not overlap in the frequency domain.

In what follows, the connected components of the support of W; will be called "bands". The

wavelet defined in (17) is thus a "two-band" wavelet. The following sections describe the construction

of -n-band" orthonormal wavelet bases.

17



3.5.1 Design of n-band orthogonal sets

Suppose the support So of IiW is the union of n disjoint intervals

(SO=[8, S1I]([s2, S31U ... US-,

Then the support of "MW is

5,, = [s• 2 -', s,2-') U18 22', 38 2 -m) U.. .U[Sn_2-, s,2`-

If the measnre of S., n s,, is zero for all noii-equal integers m and in', So is called an orthogonal

support. Hence, if the support of W is orthogonal, then

IV-, nv,) = I(Jm- 0 for ail m inm'.

In order that the time-shifted and dilated replicates W,• of IV form an orthonormal set in L2 ,

it remains to assure that W," and IF" are orthogonal for n # n' and all m. This is simplified by

the observation that
(w,• l';" .. .._

M ,, ) = (j4o, lo

Thus one must only verify that the time-shifted replicates of IV are orthogonal at a single scale. The

following two theorems describe how the support So of 0"0 can be selected to ensure orthogonality.

Theorem 3.1 Consider real numbcrs 0 < co < r, < c2 < ... < c,_1 < r,. = 2co (or 0 > co > cl >

c2 > ... > Ce-1 > c, = 2co). Then

[co, 2c(l = [Co,,C) U[C C2 U[C2, C3] U .. UC -, 2co]

Let pl.... p,, E Y and dilatc each sub-interval [cj,cj+,] by 2P.,+ to form a set

SoJ = [co2PJ $ c12P1 J]UVc2P1 ,c22P2U U... U[Cn I 21'n, 2co2llI

= [50,31)U82,33U... U[S2n, s2.-,]

T'hrn So is orthogonal.

Theorem 3.2 Suppose a support So is orthogonal. Then So can be generated by the method mentioned

in 7 heorem 3. 1 when parameters are properly chosen and possibly some subintervals are deleted.

18



The proof of these theorems are given in [28].

Suppose the support of the mother wavelet W is orthogonal. Then {Wj } will become all

orthogonal wavelet set if and only if W also, meets

(1, Wo") = 0 for n $ 7';7,,n' E Z (18)

This is equivalent to

j w(t - n)W'(t - n') dt

-2 J &(n'-n}j/(w)I2 d w (19)

for all n $ n'. With k = n - n' 0 0, this expression becomes

JCtkj 1ir(w)J2 dw = 0 (20)

for any non-?ero integer k. Some solutions of this equation are discussed below.

3.5.2 Some bases

Suppose 14" is the Fourier transform of the mother wavelet It' and its support on the frequency

domain is symmetric with positive part, is

V = •co211 , c,2P,] U[e,2P2, c2'211 U ... U(c•,-_I 2 c,2c, ,2,

where 0 < co < c, < c 2 < ... < Cn = 2c 0 and Pl,P2..... p, are integers. Also suppose that. the

amplitude of 14 equals I in V and that the phase is 0. Then the lelt side of (20) can be calculated

as follows:

= (J -c o2PI .c' 2P) + f c3 P2 + 2 2 V2 + +r C, -,2 n + I Cn2"" W k- -c22 + 1 1. ++ &wd
_-C| '12PI + I0•l J--C,2P2 ICI 2P2 d-COP"/ n, P

= 2( + +.., + ) cos(kw) dw
Jfo 2P' e I P' 1,

2 .{- sin(co2P'k) + sin(c1 211k) - sin(ce2P2k) + sin(c 22P"k) -

- sin(c, ,-12P"k) + sin(c,,2P"k)1 = 0 (21)

19

t



- - _ , T E _ , : .: ..- ,. - -.- _ . -. : .2 . - -. .

This equation is equivalent to the satisf'ýction of the following equation for any non-zero integei k.

- sin(co2P'k) + sin(c,2P1 k) - sin(ci2P2 k) + sin(c 2 2P2k)-

. ..- sin(c,_-21"k) + sin(c,2Pnk) = 0 (22)

If c 02P,, cj2P', ci2P2, c22P2, ... , c,_ 12r", and c,,2) satisfy (22), then Mcu2P', Afc 12P, Mcj2P1,

Mc 22P2, ... , Mcn_ 12v", and Mc,,2P" will also satisfy (22) for alny natural number M. So there

exists a support of a "lowest," level, which will be called the mother support. In other words, if the

end points of the support

V = co2Pl , c12P1' Utc2122, c22P~I U.. U[cn,_12P'¾ Cn2l`i

satisfy (22) and the end points of the support

S= [c02P1 IM, cj2P1 /Mj Uk12r22/M, c22P. IMj U Uko-, 2P"/M, c,2P"/MJ

do not meet (22) for any natural number M, then V is the mother support.

Example 3.1 :

Equation (22) is difficult to solve explicitly because it is nonlinear in several variables. It can

be simplified by considering the special situation where the support consists of only two symmetric

intervals; i.e., the support is [-2co2P7, -co2Pj Uljco2P1, 2co2P]) (co > 0). Denoting a = c02p', (22)

becomes

- sin(ak) + sin(2ak) = 0

or

sin(ak)[2 cos(ak) - 1] = 0 (23)

The only valid solution of (23) is a = mnr for ?I E N (the other solution a = 2rm ± ir/3 will not

satisfy (23) for any non-zero integer k).

Hence, the support is [-2mr, -mr] Unir, 2mr], the mother support is [-2r, -r) UIr, 27]. An

orthogonal wavelet basis can be constructed whose mother wavelet is

if7r<Iwj < 21r (24)
0 otherwise
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Example 3.2

Consider the four-band case which is symmetric in the frequency domain and which has unit energy.

The cut points co,el and dilation p should meet the following condition

- sin(cok) + sin(cqk) - sin(cl2Pk) + sin(2co2Pk) = 0

The above equation can be decomposed into two equations (with loss of some solutions)

{ sin(2eo?2k) - sin(cok) = 0

sin(c 12'k) - sin(ck) = 0

Which can be solved simultaneously to yield

co = •,••

C1 = --- r

Some mnother wa~vcltq are given below:

I. lForp=O, co= 7r,c, = 7r

W(~) J I wE [ 7 ,2?,
0 otherwise

2. Forp 1,CO--- IrrC1 = ic

1,'• = o; E 7r, 7 • r) U[27r, sr

0 otherwise

3. For p = 2, co 7r.cI = r

WJw) e rE ir , - r{ 0 otherwise

(see (16)).

Other rnore sophisticated multi-band wavelet symbol constructions developed under this project.

are presented in [28].
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4 Research Results: Frequency Hopping Signal Demodulation

Research in this area was focused on demodulalion of interceptcd frequency hopping spread spec-

truin signals in an uncluttered or lightly cluttered environment. Several slow frequency hopping

signals (digital voice, text, analog audio, etc.) were generated to form a modest library of test

data. This collection includes both analog and digital data and various suppressed carrier baseband

modulation techniques are represented. Software for time windowed fast Fourier transform (FFT)

and wavelet transform (WT) processing of spread spectrum data was written. A simple Viterbi-

type algorithm that operates on raw time-frequency (periodogram) or time-scale (scaleogramn) data

and produces tracks of frequency hopping signals through time-frequency or time-scale space. This

software was used to support empirical evaluation of WT measurements as the basis for estimating

t.he spreading sequence of a single slow frequency hopping signal in a noise-free and chitter-free

environment. Several wavelets were tested, and it became evident that the wavelets that provided

scaleograin measurements that led to the best spreading sequence estimates were essentially sinu-

soidal. Indeed, the fact that frequency hopping signals arc carried by sinusoidal wa.veforms seems to

make Fourier analysis particularly well suited to this problem. However, in experiments, a hybrid

algorithm using fixed-resolution FFT processing and multiresolution WT processing provided better

spreading sequence estimates than either F"FT or WT processing alone. T he WT component of the

algorithm provided better localization of the hopping times of the signal than the fixed resolution

FFT component (with relatively long integration period chosen to provide accurate frequency inea-

surements) than either WT or FFT processing alone. In addition, the efficiency of fast algorithms

for computation of wavelet transform values at dyadically arranged points in the phase plan(e pro-

vided a fast approach to "focusing in" on the true hopping times and frequencies. Some additional

experiments with lightly cluttered communication environments were undertaken.

Among the main reasons for the use of frequency hopping spread spectrum communication

bystems is their robustness with respect to detection and jamming [20). Typical slow frequency

hopping signals consist of an information signal of relatively small bandwidth modulating a carrier

signal having piecewise-constant frequency that varies ("hops") within a band much larger than

that of the information signal (figure 5). The spreading function is known to intended receivers,
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Figure 5: A typical spreading function for a slow frequency hopping communication signal. In this

context, the adjective "slow" means the period between hops (which may be fixed or variable) is

much longer than the duration of a symbol representing a single binary digit.

but unknown to unintended receivers who may wish to demodulate or jam the transmission. This

paper presents preliminary results of research into techniques for estimating the spreading function

of an unknown frequency hopping transnission using only received (intercepted) data. Since such

functions are characterized by the times and frequencies associated with the hops, techniques are

sought to accurately estimate these parameters. Good estimates of the spreading function are

directly useful in demodulation of such signals and may also be useful in jamming them.

4.1 Time-frequency techniques

The analysis tools used in this work w-re the short-time Fouricr transform (STFT) and the wavelet

transform (WT). Other approaches for analysis of signals with time-varying characteristics, such as

the Wigner-Ville and related time-frequency distributions [9] may also be applicable to this problem.

These were not used in the work prcscnted here, however.

4.1.1 The STFT

As a signal analysis too], the primary utility of the Fourier transform is decomposition of a finite-

energy signal into individual frequency components. Its value in analysis of signals with time

varying characteristics, such as frequency hopping signals, is limited because information about
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uhen the various frequency components are present in a signal is embedded in the phase of its

Fourier transform in a way that is not easy to iherprel. The magnitude of the Fourier transform

of a frequency hopping signal, for example, contains no information about when the hops occur.

The ST'T or lirne-windowed Fourier transform of a finite-energy signal f i2 -- : is a function

F : RI -* R defined by

F(t,w) = j f(r)w(r - t)c-"' d-r

In this expression, w is a bounded function, generally even and with bounded support, called

a window. In general, window selection is based on numerous criteria [15). In the context of

frequency hopping signal analysis, the primary tradeoff is in selecting the time duration of the

window. Windows of short duration allow precise temporal localization of hops at the expense

of frequency resolution. Analysis using long windows sacrifices temporal resolution but improves

frequency resolution.

4.1.2 The WT

The wavelet transform of a continuous-time finite energy signal f with respect to an analyzing

wavelet q has values

W(a, b) = J f(t)g( di

In this expression, 9' denotes the complex conjugate of 9, a > 0 is called the dilation or scalc

parameter, and b E '-P is the time shift parameter.

The wavelet transform has been shown to be of particular value in detecting and temporally

localizing discontinuities and other sudden changes in signals 11, 22). The ability of the WT using

any giveni wavelet to resolve narrowband signals tha.t are closely spaced in frequency is better at :ow

frequencies than higher frequencies. This characteristic is ideally suited for certain applications in

which frequency resolution requirements diminish in proportion to the center frequency of the band

being analyzed (e.g., "constant-Q" settings). It is not desirable for analysis of frequency hopping

signals, however, because the need for frequency resolution is uniform across a wide bandwidth.
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Figure 6: Flow diagram of a hybrid algorithm for estimating the spreading function of an intercepted

frequency hopping bignal.

4.2 An estimation algorithm

The characteristics just discussed suggest a hybrid scheme for spreading function estimation in

which WT analysis is used to estimate the hopping times and STFT analysis is used to estirnate

the frequencies of the signal segmentts. Such an algorithm is depicted in figure 6.

At the first stage, the WT of a segment of the intercepted data is computed digitally. The

discrete wavelet transform used at this stage is dyadic and provides one output value w0,j at the

coarsest scale a0 . It provides two output values vl,l and w., 2 at the next finer scale al = 2-'ao.

At scale a, = 2-"ao, it yields 2" values tv,,. .... , Wn,.2,,, resulting in a dyadic tree of output values

ending at the finest scale av = 2 -NVao. The occurrence of a hop within the segment is determined by
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comparing the sequences wo, I, . .. ,. and In.,, il. ... N 2 N. These sequences many

be interpreted as crude local spectral estimates of the signal near the leading and trailing edges

of the segment, respectively. Thus, if a hop occurs within the segment, the change in frequency

structure of the signal will be reflected in the sequences. If a hop is indicated, the outputs form the

finer scales are used to estimate the precise time(s) of the hop(s).

The next stage of the algorithm processes a segment of data bounded in time by two hops, a_s

detected in the first stage of the algorithm, using a STlT with a window whose length precisely

matches that of the segment. This is implemented by a zero-padded FFT [18]. The spectral estimate

obtained is used to estimate the frequency of the carrier between hops.

4.3 Simulation results

A digitized frequency hopping signal with the following characteristics was produced:

* BPSK baseband modulation

* Bit rate of 9600 bps

o Hopping rate varying randomly between 50 and 250 ms

• Smallest frequency hop of 20 Kllz

* No noise or interfering signals

Because the true spreading function of this signal was known, it was possible to reconstruct the

baseband signal from the frequency hopping signal simulating the reconstruction possible under ideal

conditions at an intended receiver. The signal-to-noise ratio (SNR) obtained in this reconstruction

was approximately 25 dB.

Thie hybrid algorithm described above was used to estimate the spreading function of the sim-

ulated signal. The parameters of the algorithm were chosen based on the assumption that the

shortest time between hops would be no less than 25ins and that the smallest frequency hop would

be no less than 10 KHz. Otherwise, the algorithm used no specific a priori knowledge about the

signal. The baseband signal was reconstructed using the estimated spreading function with a SNR

of approximately 14 dB.
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A similar spreading function estimnation algorithm using STIFT rather than WVT to estimatc-

the hopping times was implemeited and run on the sa-me data. It was found to be much mnujle

comnputationally eflicient, but the esti ated hopping times \Ycre not as accurate as those obtained

using WT. TIhis loss of accuracy reduced the reconstruction SNR? 1.o approximately 8 dB.

4.4 Demodulation versus jamming

In principle, accurate estimation of the spreading function of a frequency hopping signal cani be

liseful in jamming as well as in demodulation. For jamming applications, a hop must be detected

and the frequency of the new segment estimated essentially iin-..;ediatcly in order for the jamming

transmittcr to switcY. to the new frequency before tile npxt hop. Thus, estimation algorithmrs must

be causal and very fast for this application. On the other hani.l, the accuracy of the estimate 'na.y

ruv be crucial. Just having a general idea where in the phase plane the signal is concentrated will

ahlow much more efficient use of jammer energy than constant jamnming ol' a broad frequency banld.

For demodulation of an int~erceptcd signal neither causality nor fat. algorithm executicn mray be

ne~essary. Latencies of seconds or even miinurtes may have little effect on the utility Of tile sp~reading

function estimate in, demodulationl. liowever. accuracy of the estimiate ýin this applicatirm is cr,_mCia!

5 Publications

Results, from this research effort have bre-n published as follows.

5.1 Journal and conference proceedings papers

hEP following paper- describing results obtainedl midp ltis I IlSrort were published or submitted for

-evifW anld possiblel publiCationl:

1. IN. Bhout i and D3. Cochran, "Mlultiscale 'jine-Irequency Techniques for Spread Sp~ctrun-; De-

modulat ion and Jamming," Procccdings of thc I1 wenty- Sirt/m Asilomar C'onference onm Signals,

Systerns, and C'onputers, October 1992.

p ~2. 1). Cochran and G. Wei. "Scale B~ased Coding of Communication Signals," Proceedings of

the JJ"VF-SP In e~rnntlwnal Syinpositti art Timc-Frcquency and Time-Scale Analysis, Oct ober
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3. D). ('Cochranit an1d S. Enserinuk, "Use of Cyclostaiionary Features in Frequency Hopping Signal

Segment Association," Proceedings of the Workshop on Cyvclostationary Signals, August 1992.

,i. C. Wei and 1). Cochran, "Constructio, of Discrete Orthogonal Wavelet Bases," Record of the

IEEE International Symposium on Information Theory, January 1993.

5. 1). Cochran and C. Wei, "Scale-Division Multiple Access -. Part 1: Wavelet Coding and Spread

Spectrum," Submitted to IEEE Transactions on Information Theory.

5.2 Theses

The following thesis describing results obtained under this effort was prepared and defended:

* N. Bhouri, Application of Multircsolution Timc-kbequency Techniques to Spread Spectrum De-

modulation and Jamming, M.S. Thesis, Arizona State University, December 1991.

An additional thesis is in preparation arnd is expected to be defended in May, 1993:

* C. Wei, Scale-Division Multiple Access, M.S. Thesis, Arizona State University, May 1993 (in

p~repara~tioni).

6 Participating Personnel

Personne] contributing to this research effort were:

1. D. Cochran, Principal Investigator

2. C. Woi-, Research Assistant

3. N. bhouri, Research Assistant

4. D. Sinno, Research Assistant

The rescarch component of the following graduate degree was undertaken as pt.rt of this effort:

I. N. Bhouri, Master of Science in Electrical Engineering, December 1991. Thesis: Applica'.on of

Mu'tiresolut ion Timen-requency Technique. to Spread Spectrum Demodulation and Jamming
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2. C. Wei, Master of Scinii' in Electrical ]"Ingineerig,lo co plete May M093. Thesis: Seuic-

Division Multiple Acccss

7 Research I,...ractions

The following research interactions were related to this project:

1. An oral presentation entitled "Application of Multiscale Processing to Characterize Frequency

flopping Spread Spectrum Signals" was prepared by D. Cochran and N. Bhouri presented by

D. Cochran at the A FOSR/AFIT Symposium on Application of Wavelets to Signal Processing

at Wright-Patterson AFB in March 1991.

2. D. Cochran attended a series of meetings at Wright Laboratories in October 1991 to digs

cuss this project and related topics with the AFOSR Program Manager (J. Sjogren), A&

Force Laboratory personnel (J. Stephens, L. Gutman, J. Tsui), and AFIT Faculty (M. Oxley

G. Warhola). In particular, a progress briefing on this project was presented to the Prograr,

Manager at this time.

D. Cochran presented an invited lecture in the AFIT/AFOSR Distinguishvd Lecture Serif,

at the Air Force Institute of Tgehnology in September 1992. During thib visit. to Wright

Patterson AFB, he collaborated extensively with AFIT faculty (M. Oxley, !l. Suter) and ue7

with Wright Laboratories personnel.

,. 1). Cochran presented talks on this project at (a) the University of Arizona .lectrical Engineei-

ing Department Colloquium [35 attendees] in NovemhzJL90, (b) the 1EF* Signal Processinf'.

and Communications Society Phoenix Chapler Meeting [48 attendees) in February 1991, (c,

the Motorola Government Electronics Group Signal Processing Seminar Series 133 attendefs]

iii April 1991, and (d) MIT Research Laboratory for Electronics Signal Processi ng• ;up

Seminar (12 attendeesl in February 1992.

8 Inventions and Patents

No inventions or patent disclosures resulted from this research program.
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9 Additional Information

Work on the most promising aspects of this project is conitinuing under grant No. F449620-93-1-0051.
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